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1. Introduction  

Adaptive filters are widely used in various applications

such as system identification, channel equalization, noise

cancellation, active noise control, and so on [1], [2]. The

most popular adaptive filters are the least mean squares

(LMS) and normalized LMS (NLMS) algorithms due to

their simplicity. However, these algorithms have slow

convergence for colored input signals [3], [4]. To solve

this problem, the transform domain adaptive filter

(TDAF) algorithms have been proposed [5]. 

The TDAF algorithms exploit the de-correlation proper-

ties of some well-known signal transforms, such as the

discrete Fourier transform (DFT) and the discrete cosine

transform (DCT), in order to pre-whiten the input data and

speed up filter convergence [6], [7], and [8]. In the

wavelet transform domain least mean square (WTDLMS)

adaptive filtering, the projections of the input signal onto

the orthogonal subspaces are used as inputs to a linear

combiner. The weights of the linear combiner can hence

be updated by the LMS algorithm while normalizing the

power at each resolution level to achieve faster and uni-

form convergence of all weights to the optimal [9], [10].

In the above mentioned algorithms, the fixed step-size can

change the convergence rate and the steady state mean

square error (MSE). With optimally selecting the step-size

during the adaptation, we obtain fast convergence rate and

low steady state mean square error at the same time. In

the case of variable step-size (VSS) methods, various ap-

proaches have been proposed in the literatures [11], [12].

One of the most important strategy in this issue was pre-
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Fig. 1. Structure of the WTDLMS algorithm.
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sented in [13]. This approach was successfully extended

to the different adaptive filter algorithms in [14]. In this

paper, the VSS-WTDLMS is introduced. In the proposed

VSS-WTDLMS, the step-size in each subfilter changes

according to the largest decrease in mean square devia-

tion. In comparison with ordinary WTDLMS [15], the

VSS-WTDLMS has faster convergence speed and lower

steady-state MSE.

The reminder of this paper is organized as follows. In Sec-

tion 2, the WTDLMS algorithm is briefly reviewed. The

new VSS-WTDLMS is proposed in Section 3. The com-

putational complexity of the VSS-WTDLMS is discussed

in Section 4. Finally, before concluding the paper, the use-

fulness of this algorithm is demonstrated by presenting

several simulation results.

Throughout the paper,   represents transpose,  takes the

squared Euclidean norm, and   shows the Expectation.

2. The WTDLMS Adaptive Algorithm 

Consider a linear data model for   as

(1)

where wt is an unknown M-dimensional vector that we

expect to estimate, υ(n) is the measurement noise with-

variance  σ2
υ, and

denotes an 

M-dimensional input (regressor) vector. It is assumed that

υ(n) is zero mean, white, Gaussian, and independent of

x(n). Fig. 1 shows the structure of the WTDLMS algo-

rithm [9]. In this figure, the MxM matrix T is an orthogo-

nal matrix that is derived from a uniform N-band filter

bank with filters denoted by h0, h1, ..., hN-1 following the

procedure given in [9]. In matrix form, the orthogonal WT

can be expressed as  z(n)=Tx(n). This vector can be rep-

resented as where ’s

are output vectors of an N-band filter bank. By splitting

the g(n) into N subfilters, each having coefficients,

, the output signal can be

stated as

(2)

and the error signal is obtained by  . The

update equation for each subfilter in WTDLMS is given

by

(3) 

where can be computed iteratively by

(4)

with a smoothing factor .

3. The VSS-WTDLMS Adaptive Algorithm 

By defining the weight error vector  ,

where is the true unknown subfilter coefficients, the

weight error vector update equation for WTDLMS for

each subfilter can be represented as

(5)

In (5), is a variable step-size in subfilter. Taking

the squared Euclidean norm from the both sides of (5) and

then the expectation leads to

(6)

where

(7)

Maximizing  Δ with respect to leads to the follow-

ing optimum step-size

(8)

Since , we use the approximation

for a priori error as,  . 

Therefore we have

(9)

By defining  , we obtain that

. Then, the optimum step-size is

given by
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(10)

Applying the expectation into the  leads to the

(11)

We propose to estimate by time averaging as

follows:

(12)

where  . Using instead of  ,

the VSS-WTDLMS for each subfilter is established as

(13)

where

(14)

The fully update equation for VSS-WTDLMS can be ex-

pressed as

(15)

Where

(16)

and  is the matrix. Table 1 summa-

rizes the procedure of the VSS-WTDLMS adaptive algo-

rithm.

4. Computational Complexity 

Table 2 describes the computational complexity of the

proposed VSS-WTDLMS algorithm. The number of mul-

tiplications and divisions have been calculated for each

terms. In the following, Table 3 compares the computa-

tional complexity of various VSS-TDLMS algorithms.

These algorithms are from [7], [11], [12] and [14]. In this

Table, M is the number of filter coefficients, N is the num-

ber of subbands, Mi is the number of past values of the  ith

transform coefficient, and L is number of past squared val-

ues of the error. The VSS-WTDLMS algorithm needs

M2+6M+5N multiplications and 4N divisions. It is inter-

esting to note that using Haar wavelet transform (HWT)

leads to the only 6M+5N multiplications which is signif-

icantly lower than other VSS transform domain adaptive

algorithms.

5. Simulation Results 

We demonstrated the performance of the proposed algo-

rithm by several computer simulations in a system iden-

tification scenario. The unknown impulse response is

randomly selected with 16 taps  (M=16). The input signal

is an AR(1) signal generated by passing a zero-mean

white Gaussian noise through a first-order system

. An additive white Gaussian noise was

added to the system output, setting the signal-to-noise

ratio (SNR) to 30 dB. The Haar wavelet transform (HWT)

was used in all simulations which leads to the reduction

of computational complexity due to the elements (+1 and

-1) in HWT. The values of α and β were set to 0.995 and

0.9 respectively.
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Table 1. The VSS-WTDLMS Adaptive Algorithm.
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Figs. 2-4 show the mean square deviation (MSD) learning

curves of proposed VSS-WTDLMS and ordinary WT-

DLMS algorithm for different values of N. In WTDLMS,

different values for the step-size have been selected. We

observe that VSS-WTDLMS has faster convergence

speed and lower steady-state error than ordinary WT-

DLMS algorithm for all values of N. The comparison of

VSS-WTDLMS with recently and famous VSS-TDLMS

algorithms has been presented in Fig. 5 [7], [11], [12] and

[14]. The parameters of the simulated algorithms have

been chosen according to the Table 4. This figure shows

that, the proposed VSS-WTDLMS has better convergence

speed an lower steady-state error than other VSS-TDLMS

algorithms for all values of N. Also, the computational

complexity of the proposed algorithm is lower than other

 

Equation 
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Algorithm Multiplications Divisions 

DCT-LMS [7] 2 +4 1( )tM M M   2M  

VSS-TDLMS [11] 2 5 2M M L  1M  
VSS-TDLMS [12] 2 8 8M M  1M  
VSS-TDLMS [14] 2 5 8M M  1M  
VSS-WTDLMS 2 6 5M M N  4N  

VSS-WTDLMS 
(HWT) 

6 5M N  4N  

 

Table 3. The Computational Complexity of Various VSS-
WTLMS

DCT-LMS [7] VSS-TDLMS [11] 

30.9985  8 10
 10tM
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VSS-TDLMS [12] VSS-TDLMS [14] 
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VSS-WTDLMS 

0.995 0.9   

Table 4. The Parameters In VSS-TDLMS and VSS-WTDLMS
Algorithms.

 

Fig. 2. The MSD learning curves of WTDLMS and VSS-WT-

DLMS algorithms with N = 2.
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VSS-TDLMS algorithms due to using HWT.

Fig. 6 presents the variation of the step-size in each sub-

band for VSS-WTDLMS algorithm during the adaptation.

As we can see, the step-sizes start from large values and

end with low values for N=2, 4 , and 8. Finally, Fig. 7

shows the number of filter coefficients versus the filter

length for VSS-TDLMS, WTDLMS, and VSS-WTDLMS

algorithms. This figure indicates that the computational

complexity of VSS-WTDLMS with HWT is significantly

lower than other algorithms.

6. Conclusion 

In this paper, the WTDLMS with VSS was established.

The step-size in each subband changes according to the

largest decrease in mean square deviation. The simulation

results indicated that the proposed VSS-WTDLMS had

 

Fig. 3. The MSD learning curves of WTDLMS and VSS-WT-

DLMS algorithms with N = 4.

 

Fig. 4. The MSD learning curves of WTDLMS and VSS-WT-

DLMS algorithms with N = 8.

 

Fig. 5. The MSD learning curves of various VSS-TDLMS and

VSS-WTDLMS algorithms.

 

Fig. 6. Variation of the step-size in each subband during the

adaptation for VSS-WTDLMS.

 

Fig. 7. The number of filter coefficients versus the filter
length (M) in various VSS-TDLMS, WTDLMS, and VSS-

WTDLMS algorithms.
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faster convergence speed and lower steady-state error than

ordinary WTDLMS and other VSS-TDLMS algorithms.

Also, the computational complexity of VSS-WTDLMS

with HWT was significantly lower than other algorithms.
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